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1 | Introduction 

Along with the worldwide tragedy of human fatalities, Covid-19 has an impact on other economic sectors 

and activities, including manufacturing, supply chain logistics, etc. [1]. Small cities in low-income nations like 

India, Pakistan, Afghanistan, Bangladesh, Nepal, Bhutan, Thailand, Myanmar, and the Maldives are 

experiencing financial difficulties as a result of the lock-down [2] and closure imposed by their respective 

governments. The government closes the borders of many cities for security reasons. Therefore, in order to 

maintain their company, small and medium-sized business owners require the most cost-effective EOQ 

         Transactions on Quantitative Finance and Beyond 

www.journal-tqfb.com 

              Vol. 1, No. 1 (2024) 15–28. 

 Paper Type: Original Article 

An EOQ Model for Two Warehouse System 

During Lock-Down Considering Linear Time 

Dependent Demand 

Dolagobinda Das1,* , Gauranga Charan Samanta1
 

1 Department of Mathematics, Fakir Mohan University, Vyasa Vihar, Balasore, 756019, Odisha, India; 

dolagobinda.math@gmail.com; gauranga81@gmail.com. 
 

Citation: 

Received: 14 March 2023 

Revised: March 2023 

Accepted:02/05/2023 

Das, D., & Samanta, G. Ch. (2024). An EOQ model for two warehouse 

system during lock-down considering linear time dependent demand.  

Transactions on quantitative finance and beyond, 1(1), 15-28. 
 

The COVID-19 epidemic had a significant impact on both India and the rest of the world. The manufacturing 

and selling processes have been delayed due to the Covid-19 epidemic’s quick spread. Many sectors are now 

searching for a suitable and efficient disruption recovery strategy to assist in their recovery. Thus, the goal of 

this essay is to create a workable model that takes the Covid-19 pandemic’s many elements into account. This 

study proposes an inventory model while taking into account an interruption in demand. In this model, the 

FIFO policy is used to analyze effect of degradation. It has been suggested that a two-parametric Weibull 

distribution would accurately reflect the actual issues brought on by degradation. A two-warehouse system’s 

total cost will be as low as possible during the lock-down period, according to the research. Additionally, 

sensitivity analysis was utilized to assess the behavior of the models. 

Keywords: Demand disruptions, Perishables items, EOQ model, Covid-19 lock-down, Deterioration, Linear 

demand. 

mailto:dastam66@gmail.com
http://www.sa-journal.org/
https://orcid.org/0000-0002-9603-1818


An EOQ model for two warehouse system during lock-down considering linear time dependent demand 

16 

inventory design for products. A quick increase in demand coupled with a lack of significant raw materials 

because of disturbances in the global supply chain is the worst-case scenario Covid-19 has brought about in 

terms of vital stock availability [3]. The creation and distribution of vaccines may potentially be hampered by 

such a supply chain network breakdown [4]. 

The rate of perishable product degradation has associated effects. Because a perishable product’s rate of 

degradation is closely tied to its quality, it affects customer demand in a similar way. For instance, freshness 

is a crucial aspect of the quality of an Agri-fresh product. The look of an Agri-fresh product is often used as 

a proxy by customers to assess its freshness [5]. Bhunia and Shaikh [6] looked at a predictive inventory model 

for things that continually degrade. Dye and Yang [7] looked at how preservation investments affected the 

optimum course of action for an inventory model for perishable goods. According to [8], heterogeneous 

product quality with a rate of degradation at various temperatures and stages is taken into account. Tiwari et 

al. [9] provided a supply chain inventory model with an expiry date to ascertain the ideal pricing and 

replenishment cycle. For perishable items, Shaikh et al. [10] developed an EOQ method in which degradation 

starts after a certain length of time has passed since the goods were kept. Yang et al. [11] research focuses on 

controlling degradation rate by treating degradation as a constant. Garg et al. [12] created a methodology to 

deal with a two-warehouse inventory model for perishable goods with partial backlog in an effort to increase 

total profit. Rana et al. [13] built research for two warehouse systems for products that were going bad while 

taking demand disruption during the Covid epidemic into account. Kumar et al. [14] investigated a model for 

slowly decaying goods in a two-warehouse system under inflationary circumstances. Das et al. [15] takes into 

account a two-warehouse system with a demand that varies linearly with time and a two-parameter Weibull 

distribution that accounts for degradation. 

The demand function is crucial in developing strategies for inventory models. It varies according on several 

factors, including time, quality, special offers, etc. The selling price, supply level, product greenness, timing, 

and other variables all have an impact on variable demand. Using a time- and price-dependent demand rate, 

Maihami and Kamalabadi [16] examined a joint pricing inventory model. The multi-period inventory routing 

problem was dealt with by [17] using stochastic demand. Recent publications in this area include works by 

[18]–[21] and others. The major aspects of our contribution are compared to published papers in Table 1. 

Rana et al. [13] investigated an EOQ model for a two-warehouse system that incorporates linear time-

dependent demand while taking Covid-19 lock-down demand disruption into account. The article takes two 

scenarios, one for a short lock-down time and the other for a lengthy lock-down period, to describe the 

Covid-19 pandemic issue. Rana et al. [13] does not consider the possibility that a government may be late in 

declaring lock-down in order to control the Covid-19 transmission rate. This research examines the prospect 

of an unavoidable scenario similar to Covid-19, in which the government may be late in declaring a lock-

down or shut-down, and result in the inventory of Owned Warehouse (OW) being fully depleted before the 

lock-down start owing to customer over stocking. Additionally, to add realism to the model, Weibull 

distribution is used to account for the pace of degradation. This model takes the First In, First Out (FIFO) 

method into account to lower the effect of deterioration. 

The remaining portions of the study explains follows; in Section 2, the research classify problem description, 

mathematical notation and assumption. The required solution procedure and a numerical example taken to 

validate the research model in Section 3. In Section 4 required sensitivity analysis processed for various 

parameter. Finally, a justified conclusion draws to the research model in Section 5. 
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Table 1. Comparing our suggested research against previously published research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 | Mathematical Model, Assumptions, and Notations 

2.1 | Assumption 

I. Two-parametric Weibull distribution is taken into account for degradation rate. 

II. The lead time has been supposed insignificant. 

III. We can start keeping goods in a Rented Warehouse (RW) when an OW completely full. 

IV. The OW has a finite amount of storage capacity for W units, whereas the RW has an infinite amount of 

storage space. 

V. The inventory management tools can handle single kind of product. 

VI. The damaged product cannot be fixed. 

VII. The government’s imposition of the entire lock-down and subsequent lifting is referred to as periodsTL 

and TO, respectively. 

VIII. The preliminary demand rate (α) is assumed to represent a percentage of Δd and Δd1. 

IX. The FIFO dispatched technique is applied when the OW wipes out of capacity, which means that the 

first product in the OW consumed before the last product in the RW. 

 

 2.2 | Notations 

 Table 2 presents the key notations used in this work, aimed at enhancing clarity. 

 

 

Ref. Demand 
Function 

Degradation 
Function 

Degradation 
Rate 

Demand 
Disruption 

Objective 
Function 

[22] Constant Constant Instantaneous No Cost 
[23] Exponentially 

vary with time 
Constant Instantaneous No Cost 

[24] Increase over 
Time 

Constant Instantaneous No Profit 

[25] Based on price Constant Non-
instantaneous 

No Profit 

[26] Based on price Constant Instantaneous No Cost 
[27] Stoke and time 

dependent 
Two Parameter 
Weibull distribution 

Instantaneous No Cost 

[28] Based on price Constant Instantaneous No Profit 
[9] Based on price Based on time Instantaneous No Profit 
[10] Based on price Three parameter 

Weibull distribution 
Non-
instantaneous 

No Profit 

[29] Based on stocks Constant Non-
instantaneous 

No Cost 

[30] Inflation induced 
time dependent 

Constant Instantaneous No Cost 

[31] Based on 
Backlogged 

Constant Instantaneous No Cost 

[14] Based on Stocks Constant Instantaneous No Cost 
Proposed 
Project 

Time dependent Two parameter 
Weibull distribution 

Instantaneous Yes Cost 
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Table 2.  Notations of the work. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 | Mathematical Model Development 

First off, the merchant purchased Q quantities of items, which is more than OW could handle. The shop 

must thus store the excess inventory in a RW. Since the holding cost of RW is higher than OW owing to 

having advanced storage facilities, the shop first stored things in OW, or W. After completing OW, the 

merchant stores the leftover products X =  Q − W in RW. We employ FIFO policy, which means that after 

entirely evacuating OW, the merchant uses RW’s stock, in order to reduce the effect of degradation. The 

inventories of OW diminish from 0 to tw due to a combination of demand and degradation, and at tw, the 

OW is eventually fully empty. The RW only saw degradation throughout this time. Following tw, the RW 

begins to diminish as a result of demand and degradation, eventually falling to zero at T. Fig. 1 shows all of 

the important facts described previously. 

 

Fig. 1. Graphical illustration. 

 

Notation Description 

D(t) The demand rate at time t, we assumed D(t) = α + βt where 𝛼 is the starting demand 
rate, and β is the rate at which demand rises over time. 

T Total time period. 
TL The period of time when the government-imposed lock-down. 
TO The point at which the government has relaxed the lock-down. 
tw When OW is completely empty. 
Z Lock-down period (i.e.,  TO − TL). 
CP Purchase price per stock. 
G Holding costs per stock per unit time in OW. 
E Holding costs per stock per unit time in RW. 
Δd Definite drop-in demand rate due to lock-down Limitations. 
Δd1 Definite rise in demand rate due to lock-down Limitations relaxed by government. 
Io1(t) Inventory quantity at time t in OW in time intervals 0 toTL. 
Ir1(t) Inventory quantity at any given moment t in RW at various intervals, where i = 1,2,3,4. 
Q Total order quantity. 
W Storage of OW. 
X Stocks to be store in RW (i.e., Q − W ). 
a The OW and RW degradation rate's scale parameter. 
b The OW and RW degradation rate's shape parameter. 
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During the time 0 → tw, the inventory at the own warehouse decreases due to effect of the both degradation 

and demand, which is represented by the differential Eq. (1), 

Using the boundary condition Io1(0) = W, the solution of the above differential equation is: 

Calculate 𝐭𝐰 (the time at which OW completely empty) 

Allow the OW is to be ultimately fully emptied at time tw i.e., Io1(tw) = 0, where 0 ≤ tw ≤ TL. 

Now Io1(tw) = 0. 

Neglecting the higher power of tw i.e., tw
b+1 and tw

b+2 from Eq. (3), we get 

Throughout the time period 0 to tw the inventory in RW, Ir1, face only degradation, So, demand will be zero, 

therefore inventory of Ir1 represented by Eq. (5), 

Using the initial condition Ir1(0) = X, the above differential equations answer is: 

Throughout the time period tw to TL, the inventory in RW, Ir2(t), face both degradation and demand (α +

 βt), therefore 

Using initial condition Ir1(tw) = Ir2(tw), the above differential equation’s answer is: 

During (TL ≤ t ≤ TO) the inventory in RW, Ir3(t), face a decrease in demand rate (Δd), and represented by 

differential Eq. (8) : 

Using initial condition Ir2(TL) = Ir3(TL), the above differential equations answer is: 

During (TO ≤ t ≤ T), The inventory in RW, Ir4(t), face a increase in demand rate (Δd1), and represented by 

differential Eq. (11). 

Using initial condition Ir4(T) = 0, the above differential equations answer is: 

dIo1(t)

dt
+ abtb−1Io1(t) = −(α + βt). (1) 

Io1(t) = e−atb
[W − t (α +

tβ

2
) − atb+1 (

α

b + 1
+

βt

b + 2
)]. (2) 

W − tw (α −
twβ

2
) − atw

b+1 (
α

b + 1
+

βtw

b + 2
) = 0. (3) 

tw =
−α ± √α2 + 2βW

β
. (4) 

dIr1(t)

dt
+ abtb−1Ir1(t) = 0. (5) 

Ir1(t) = Xe−atb
. (6) 

dIr2(t)

dt
+ abtb−1Ir2(t) = −(α + β𝑡). (7) 

Ir2(t) = e−atb
[α(tw − t) +

β

2
(tw

2 − t2) +
αa

b + 1
(tw

b+1 − tb−1)  +
βa

b + 2
(tw

b+2 − tb+2) + X]. (8) 

dIr3(t)

dt
+ abtb−1Ir3(t) = −(α + βt − Δd).  (9) 

Ir3(t) = e−atb
[X + (Δd − α) (t − TL +

a

b+1
(tb+1 − TL

b+1)) − β (
1

2
(t2 − TL

2) +

a

b+2
(tb+2 − TL

b+2))].  
(10) 

dIr4(t)

dt
+ abtb−1Ir4(t) = −(α + βt + Δd1). (11) 
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Cost evaluation 

I. The ordering costs is OC. 

II. Total inventory holding costs in (CH). 

III. Purchasing costs per cycle is CpQ. 

IV. Total degradation cost is (CD). 

 

Ir4(t) = e−atb
[(α + Δd1) ((T − t) +

a

b + 1
(Tb+1 − tb+1))

+ β (
1

2
(T2 − t2) +

a

b + 2
(Tb+2 − tb+2))]. 

(12) 

  CH = G [∫ Io1(t)dt
tw

0

] + E [∫ Ir1(t)dt
tw

0

+ ∫ Ir2(t)dt
TL

tw

+ ∫ Ir3(t)dt
TO

TL

+ ∫ Ir4(t)dt
T

TO

], (13) 

CH = G [∫ e−atb
t

0

[W − t (α +
βt

2
) − atb+1 (

α

b + 1
+

βt

b + 2
)] dt]

+ E [∫ X
tw

0

e−atb
dt

+ ∫ e−atb
TL

tw

[α(tw − t) +
β2

2
(tw

2 − t) +
αa

b + 1
(tw

b+1 − tb+1) +
βa

b + 2
(tw

b+2 − tb+2 + X)]

+ ∫ e−atb
TO

TL

[X + (Δd − α) (t − TL +
a

b + 1
(tb+1 − TL

b+1))

− β (
1

2
(t2 − TL

2) +
a

b + 2
(tb+2 − TL

b+2))] dt

+ ∫ e−atb
T

TO

[(α + Δd1) ((T − t) +
a

b + 1
(Tb+1 − tb+1))

+ β (
1

2
(T2 − t2) +

a

b + 2
(Tb+2 − tb+2))] dt]. 

 

CD = CP [∫ abtb−1IO1(t)dt
tw

0

+ ∫ ab
tw

0

tb−1Ir1(t)dt + ∫ ab
TL

tw

tb−1Ir2(t)dt + ∫ ab
TO

TL

tb−1Ir3(t)dt

+ ∫ ab
T

TO

tb−1Ir4(t)dt]. 

(14) 

CD = Cp [∫ ab
tw

0

tb−1e−atb−1
[W − t (α +

βt

2
) − atb+1 (

α

b + 1
+

βt

b + 2
)] dt + ∫ ab

tw

0

tb−1Xe−atb
dt

+ ∫ ab
TL

tw

tb−1e−atb
[α(tw − t) +

β

2
(tw

2 − t2) +
αa

b + 1
(tw

b+1 − tb−1)

+
βa

b + 2
(tw

b+2 − tb+2) + X] dt

+ ∫ ab
TO

TL

tb−1e−atb
[X + (Δd − α) (t − TL +

a

b + 1
(tb+1 − TL

b+1))

− β (
1

2
(t2 − TL

2) +
a

b + 2
(tb+2 − TL

b+2))] dt

+ ∫ ab
T

TO

tb−1e−atb
[(α + Δd1) ((T − t) +

a

b + 1
(Tb+1 − tb+1))

+ β (
1

2
(T2 − t2) +

a

b + 2
(Tb+2 − tb+2))] dt]. 
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X. Purchasing costs per cycle is CpQ. 

CH = G [W (tw −
atw

b+1

b + 1
) − αtw

2 (
1

2
−

atw
b

b + 2
) −

αatw
b+2

b + 1
(

1

b + 2
−

atw
b

2b + 2
) −

βtw
3

2
(

1

3
−

atw
b

b + 3
)

−
aβtw

b+3

b + 2
(

1

b + 3
−

atw
b

2b + 3
)]

+ E [X (tw −
atw

b+1

b + 1
)

+ α [tw(TL − tw) −
1

2
(TL

2 − tw
2 ) −

atw

b + 1
(TL

b+1 − tw
b+1)

+
a

b + 1
(TL

b+2 − tw
b+2)]

+
β

2
[tw

2 (TL − tw) −
1

3
(TL

3 − tw
3 ) −

atw
2

b + 1
(TL

b+1 − tw
b+1)

+
a

b + 3
(TL

b+3 − tw
b+3)]

+
aα

b + 1
[tw

b+1(TL − tw) −
1

b + 2
(TL

b+2 − tw
b+2) −

atw
b+1

b + 1
(TL

b+1 − tw
b+1)

+
a

2b + 2
(TL

2b+2 − tw
2b+2)]

+
aβ

b + 2
[tw

b+2(TL − tw) −
1

b + 3
(TL

b+3 − tw
b+3) −

atw
b+2

b + 2
(TL

b+1 − tw
b+1)

+
a

2b + 3
(TL

2b+3 − tw
2b+3)] + X [TL − tw −

a

b + 1
(TL

b+1 − tw
b+1)]

+ α [tw(TO − TL) −
1

2
(TO

2 − TL
2) −

atw

b + 1
(TO

b+1 − TL
b+1)

+
a

b + 1
(TO

b+2 − TL
b+2)]

+
β

2
[tw

2 (TO − TL) −
1

3
(TO

3 − TL
3) −

atw
2

b + 1
(TO

b+1 − TL
b+1)

+
a

b + 3
(TO

b+3 − TL
b+3)]

+
aα

b + 1
[tw

b+1(TO − TL) −
1

b + 2
(TO

b+2 − TL
b+2) −

atw
b+1

b + 1
(TO

b+1 − TL
b+1)

+
a

2b + 2
(T0

2b+2 − Tl
2b+2)]

+
aβ

b + 2
[tw

b+2(T0 − Tl) −
1

b + 3
(T0

b+3 − Tl
b+3) −

atw
b+2

b + 2
(T0

b+1 − Tl
b+1)

+
a

2b + 3
(TO

2b+3 − TL
2b+3)]

+ Δd [
1

2
(TO

2 − TL
2) − TL(TO − TL) −

a

b + 2
(TO

b+2 − TL
b+2)

+
TL

b + 1
(TO

b+1 − TL
b+1)] + X [TO − TL +

a

b + 1
(TO

b+1 − TL
b+1)]]. 
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XI. Total degradation cost is (CD). 

 

 

CD = CP [∫ abtb−1IO1(t)dt
tw

0

+ ∫ ab
tw

0

tb−1Ir1(t)dt + ∫ ab
TL

tw

tb−1Ir2(t)dt

+ ∫ ab
TO

TL

tb−1Ir3(t)dt + ∫ ab
T

TO

tb−1Ir4(t)dt]. 

(15) 

CD = Cp [∫ ab
tw

0

tb−1e−atb−1
[W − t (α +

βt

2
) − atb+1 (

α

b + 1
+

βt

b + 2
)] dt

+ ∫ ab
tw

0

tb−1Xe−atb
dt

+ ∫ ab
TL

tw

tb−1e−atb
[α(tw − t) +

β

2
(tw

2 − t2)

+
αa

b + 1
(tw

b+1 − tb−1) +
βa

b + 2
(tw

b+2 − tb+2) + X] dt

+ ∫ ab
TO

TL

tb−1e−atb
[X

+ (Δd − α) (t − TL +
a

b + 1
(tb+1 − TL

b+1))

− β (
1

2
(t2 − TL

2) +
a

b + 2
(tb+2 − TL

b+2))] dt

+ ∫ ab
T

TO

tb−1e−atb
[(α + Δd1) ((T − t) +

a

b + 1
(Tb+1 − tb+1))

+ β (
1

2
(T2 − t2) +

a

b + 2
(Tb+2 − tb+2))] dt]. 

 

CD = Cp[Watw
b (1 −

atw
b

2
) −

αabtw
b+1

b + 1
(1 +

atw
b

2b + 1
) −

βabtw
b+2

2(b + 2)
(1 +

atw
b

b + 1
)

+ αa2btw
2b+1 (

1

2b + 1
+

atw
b

(b + 1)(3b + 1)
)

+ βa2btw
2b+2 (

1

4(b + 1)
+

atw
b

(b + 2)(3b + 2)
) + Xatw

b (1 −
atw

b

2
)

+ ab [α [
tw

b
(TL

b − tw
b ) −

atw

2b
(TL

2b − tw
2b) −

1

b + 1
(TL

b+1 − tw
b+1)

+
a

2b + 1
(TL

2b+1 − tw
2b+1)]

+
β

2
[
tw

2

b
(TL

b − tw
b ) −

atw
2

2b
(TL

2b − tw
2b) −

1

b + 2
(TL

b+2 − tw
b+2)

+
a

2b + 2
(TL

2b+2 − tw
2b+2)]] 

(16) 
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Total cost per cycle for the given model, 

+
αa

b + 1
[
tw

b+1

b
(TL

b − tw
b ) −

atw
b+1

2b
(TL

2b − tw
2b) −

1

2b + 1
(TL

2b+1 − tw
2b+1)

+
a

3b + 1
(TL

3b+1 − tw
3b+1)]

+
βa

b + 2
[
tw

b+2

b
(TL

b − tw
b ) −

atw
b+2

2b
(TL

2b − tw
2b) −

1

2b + 2
(TL

2b+2 − tw
2b+2)

+
a

3b + 2
(TL

3b+2 − tw
3b+2)] + X [

1

b
(TL

b − tw
b ) −

a

2b
(TL

2b − tw
2b)]

+ ab [α [
tw

b
(T0

b − TL
b) −

atw

2b
(T0

2b − TL
2b) −

1

b + 1
(T0

b+1 − TL
b+1)

+
a

2b + 1
(T0

2b+1 − TL
2b+1)]

+
β

2
[
tw

2

b
(T0

b − TL
b) −

atw
2

2b
(T0

2b − TL
2b) −

1

b + 2
(T0

b+2 − TL
b+2)

+
a

2b + 2
(T0

2b+2 − TL
2b+2)]

+
αa

b + 1
[
tw

b+1

b
(T0

b − TL
b)  −

atw
b+1

2b
(T0

2b − TL
2b) −

1

2b + 1
(T0

2b+1 − TL
2b+1)

+
a

3b + 1
(T0

3b+1 − TL
3b+1)]

+
βa

b + 2
[
tw

b+2

b
(T0

b − TL
b) −

atw
b+2

2b
(T0

2b − TL
2b) −

1

2b + 2
(T0

2b+2 − TL
2b+2)

+
a

3b + 2
(T0

3b+2 − TL
3b+2)]

+ Δd [
1

b + 1
(T0

b+1 − TL
b+1)

a

2b + 1
(T0

2b+1 − TL
2b+1) −

Tl

b
(T0

b − TL
b)

+
aTl

2b
(T0

2b − TL
2b)]

+ Δda [
1

2b + 1
(T0

2b+1 − TL
2b+1) −

a

3b + 1
(T0

3b+1 − TL
3b+1) −

Tl
b+1

b
(T0

b − TL
b)

+
aTl

b+1

2b
(T0

2b − TL
2b)] + X [

1

b
(T0

b − TL
b) +

a

2b
(T0

2b − TL
2b)]]

+ ab(Δd1 + α) [
T

b
(1 −

aTb

b + 1
) ((Tb − T0

b) −
1

2
(T2b − T0

2b))

+ (1 +
a

b + 1
) (

T2b+1 − T0
2b+1

2b + 1
−

Tb+1 − T0
b+1

b + 1
+

a(T3b+1 − T0
3b+1)

(b + 1)(3b + 1)
)

+ βa2b (
T2(T2b − T0

2b)

2b
(

1

2
−

aTb

b + 2
) −

T2b+2 − T0
2b+1

4(b + 1)

−
a(T3b+2 − T0

3b+2)

(b + 2)(3b + 2)
)]]. 

 

TC = OC + CH + CpQ + CD, (17) 
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where OC, CpQ, CH and CD are consider for total ordering costs, purchasing costs, holding costs and 

degradation costs for the given model respectively. 

3 | Solution Procedure 

The entire cost of the inventory system is calculated using the following steps, and the graph shows how 

different factors affect the system overall cost.  

Step 1. Configure each input parameter. 

Step 2. Analyze the pace at which demand is changing D(t). 

Step 3. Determine how many items are stored in RW (X). 

Step 4. Analyze the stock quantity in OW and RW at every given time t, IO1, and Ir1, Ir2, Ir3, Ir4  respectively. 

Step 5. Calculate tw. 

Step 6. Determine the Total Costs (TC) per cycle. 

Step 7. Display the total cost curves based on several factors.  

3.1 | Numerical Example 

A numerical example is used to illustrate the impact of demand interruption on total costs as a result of the 

lock-down that was implemented by government. Using the supplied data, the graphs are solved and plotted 

using mathematical. 

4 | Sensitivity Analysis 

Here we use two demand parameters like α (the starting demand rate), β (the rate at which demand rises over 

time) and two Weibull distribution degradation parameters like a (scale parameter), b (shape parameter). And 

we use another two must important factors i.e., Δd (reduced demand rate due to, lock-down imposed), Δd1 

(rise in demand rate due relax the lock-down). We consider G as holding costs per unit stocks in OW and E 

as holding costs per unit stocks in RW. The lock-down period Z = (TO − TL) plays an important role in this 

model. Here 20% and 10% changes in parameter consider and also percentage changes in total cost are 

calculated in Table 3 and graphical sensitivity analysis shown in Fig. 2. 

I. We can see that any modification to these factors has a substantial impact on the result. When the lock-

down period Z increases, the degradation cost as well as the holding cost increases So the total cost 

increases. 

II. The parameter 𝛼 and β are related to demand function, so when α or β increases the demand is increasing. 

Therefore, effect of degradation decreases and the holding time of stocks at both warehouse decreases 

which implies a decrease in total degradation cost and holding cost. So total cost decreases. 

III. When the holding costs per unit item of OW (G) and RW (E) rises, the total holding costs also rises while 

other costs remain constant, which results in an increase in the total costs. 

IV. Δd is the amount of demand decrease due to lock-down imposed by government. So, when Δd rises the 

demand rate fall so stocks are kept at warehouse for a longer time and effect of degradation increases and 

due to this, the holding cost and degradation cost was increases. Therefore, total cost of the model increases. 

V. Lock-down was relaxed by government so Δd1 amount of demand increases because panic buying behaviour 

of the customer. So, when Δd1 increases, the holding period of stocks at warehouse decreases and effect of 

Let a = 0.5, b = 2, Z = 0.4, Q = 400, X = 250, W = 150, Δd = 130, Δd1 = 70, α = 230, β =

20, E = 3, G = 2, TL = 0.6, TO = TL + Z = 1, B = 300, C = 20, T = 1.2, then TC (Total Cost) =

 10871.5. 

(17) 
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degradation decreases. So, the total holding costs and degradation cost decreases. Therefore, total costs of 

the model decreases. 

Table 3. Sensitivity analysis for the research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. Total cost (TC) varies with respect to 𝚫𝐝. 

 

Parameter Value Total Cost Total Cost Variation (%) 

a 0.6 11268.6 3.65 
0.55 11068 1.81 
0.45 10678.2 -1.78 
0.4 10488.1 -3.53 

b 2.4 10922.4 0.47 
2.2 10896.5 0.23 
1.8 10847.8 -0.22 
1.6 10825.6 -0.46 

Δd 156 10900 0.26 
143 10885.8 0.13 
117 10857.3 -0.13 
104 10843 -0.26 

Δd1 84 10846.5 -0.23 
77 10859 -0.11 
63 10884 0.11 
56 10896 0.23 

α 276 10805.2 -0.61 
253 10838.4 -0.3 
207 10904.7 0.31 
184 10925.8 0.5 

β 24 10799.8 -0.66 
22 10865.7 -0.05 
18 10877.3 0.05 
16 10883.2 0.11 

Z 0.48 10886.7 0.14 
0.44 10883.5 0.11 
0.36 10847.6 -0.22 
0.32 10807.9 -0.59 

G 2.4 10887.6 0.15 
2.2 10879.6 0.07 
1.8 10863.4 -0.07 
1.6 10855.4 -0.15 

E 3.6 10967.1 0.88 
3.3 10919.3 0.44 
2.7 10823.7 -0.44 
2.4 10775.9 -0.88 
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b. Total cost (TC) varies with respect to 𝚫𝐝𝟏. 

c. Total cost (TC) varies with respect to 𝐙 and time 𝐓. 

Fig 2. Total cost (TC) change with respect to 𝚫𝐝, 𝚫𝐝𝟏 and 𝐙 with respect to 𝐓. 

 

5 | Conclusion 

In the majority of countries, the Covid-19 outbreak has dramatically changed the economic landscape. During 

Covid-19 epidemic, many victims are owners of medium- and small-sized businesses. A country’s economy 

will expand in the business sector, which is the pillar of the economy. This article investigates the effect Covid-

19 epidemic and suggests an inventory approach. This mathematical research was investigating, (a) the impact 

of demand interruption, i.e., the decline and increasing demands due to Covid-19 lock-down, (b) the effect 

of time frame of lock-down on the total costs, and (c) importance of two warehouse inventory system. We 

solve a mathematical scenario to show how the lock-down duration influences total expenditures. This 

research examines the importance of FIFO policy to measure the effect of degradation. Due to discounts 

provided for big orders as well as other factors, the merchant makes more orders than the warehouse can 

store. The merchant is therefore needed to keep the excess supplies in any RW in this model. This research 

demonstrates that increasing OW capacity may lower total holding costs since RW has higher holding costs 

than OW, hence lowering the system’s overall cost. It has a number of limitations, for instance, it ignores 

inflation and partial backlogs and employs a fixed rise and drop in convenience demand because genuine 

demand disruption is difficult to assess. 
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