The Impact of Artificial Intelligence on Audit Efficiency in Companies Listed on the Tehran Stock Exchange

Authors

  • Ramin Sadeghian Department of Industrial Engineering, Payame Noor University, Tehran, Iran.
  • Alireza Hamidieh Department of Industrial Engineering, Payame Noor University, Tehran, Iran.
  • Ebrahim Farbod‎ Department of Industrial Engineering, Payame Noor University, Tehran, Iran.

DOI:

https://doi.org/10.22105/tqfb.v1i2.34

Keywords:

Digital transformation, Audit efficiency, Audit delay, Iranian capital market, Financial leverage, Artificial intelligence

Abstract

The purpose of this study is to investigate the impact of digital transformation on audit efficiency in companies listed on the Iranian capital market. Audit delay is used as a key measure to evaluate audit efficiency. To assess digital transformation, an index based on the frequency of keywords related to digital technologies, such as "Internet of Things," "Artificial Intelligence," "Cloud Computing," and "Big Data," in annual reports of companies is calculated. Control variables include company size, financial leverage, board independence, ownership concentration, Return on Assets (ROA), company losses, and CEO duality.

This research is applied and descriptive survey in nature, and data were collected from financial reports of companies listed on the Tehran Stock Exchange between 2018 and 2022. Data analysis was performed using linear regression and the Eviews software, with the study adopting a panel data methodology.

The results indicate that digital transformation negatively affects audit efficiency, leading to increased audit report delays. Additionally, companies with higher levels of digital transformation experienced more significant audit delays. These effects were particularly evident in firms with higher financial leverage and lower ownership concentration.

This study highlights that digital transformation presents new challenges for the auditing profession, emphasizing the need for enhanced skills and the adoption of relevant technologies in the audit process.

References

‎[1] ‎ Jenson, M. C., & Meckling, W. H. (1976). Theory of the firm: managerial behavior, agency costs and ‎ownership structure. Journal of financial economics, 3(4), 305–360. https://doi.org/10.1016/0304-‎‎405X(76)90026-X

‎[2] ‎ Iain, G., & Stuart, M. (2011). The audit process: principles, practice and cases. Cengage Learning EMEA. ‎https://www.amazon.com/Audit-Process-Principles-Practice-Cases/dp/1408030497‎

‎[3] ‎ Carcello, J. V, Hermanson, D. R., & Ye, Z. (2011). Corporate governance research in accounting and ‎auditing: insights, practice implications, and future research directions. Auditing: a journal of practice & ‎theory, 30(3), 1–31. https://doi.org/10.2308/ajpt-10112‎

‎[4] ‎ Gartner, I. T. (2020). Glossary. http://www. gartner. com/it-glossary/big-data

‎[5] ‎ Dengler, K., & Matthes, B. (2018). The impacts of digital transformation on the labour market: ‎Substitution potentials of occupations in Germany. Technological forecasting and social change, 137, 304–‎‎316. DOI:10.1016/j.techfore.2018.09.024‎

‎[6] ‎ Zuboff, S. (1988). In the age of the smart machine: the future of work and power. Basic Books, Inc. ‎https://dl.acm.org/doi/abs/10.5555/47303‎

‎[7] ‎ Meier, C. (2017). Managing digitalization: challenges and opportunities for business. Management, ‎‎12(2), 111–113. DOI:10.26493/1854-4231.12.111-113‎

‎[8] ‎ Sahut, J. M., Hikkerova, L., & Khalfallah, M. (2012). Business model and performance of firms. ‎International business research, 6(2), 64. DOI:10.5539/ibr.v6n2p64‎

‎[9] ‎ van den Broek, T., & van Veenstra, A. F. (2018). Governance of big data collaborations: how to balance ‎regulatory compliance and disruptive innovation. Technological forecasting and social change, 129, 330–‎‎338. DOI:10.1016/j.techfore.2017.09.040‎

‎[10] ‎ Manita, R., Elommal, N., Baudier, P., & Hikkerova, L. (2020). The digital transformation of external ‎audit and its impact on corporate governance. Technological forecasting and social change, 150, 119751. ‎DOI:10.1016/j.techfore.2019.119751‎

‎[11] ‎ Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: the ‎formalization of audit and workforce supplementation. Journal of emerging technologies in accounting, ‎‎13(2), 1–20. DOI:10.2308/jeta-10511‎

‎[12] ‎ Krahel, J. P., & Titera, W. R. (2015). Consequences of big data and formalization on accounting and ‎auditing standards. Accounting horizons, 29(2), 409–422. DOI:10.2308/acch-51065‎

‎[13] ‎ Cao, M., Chychyla, R., & Stewart, T. (2015). Big data analytics in financial statement audits. Accounting ‎horizons, 29(2), 423–429. DOI:10.2308/acch-51068‎

‎[14] ‎ Frishammar, J., Richtnér, A., Brattström, A., Magnusson, M., & Björk, J. (2019). Opportunities and ‎challenges in the new innovation landscape: implications for innovation auditing and innovation ‎management. European management journal, 37(2), 151–164. DOI:10.1016/j.emj.2018.05.002‎

‎[15] ‎ Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral implications of big data’s impact on ‎audit judgment and decision making and future research directions. Accounting horizons, 29(2), 451–468. ‎DOI:10.2308/acch-51023‎

‎[16] ‎ Frouzesh, R., & Moghadam, A. K. (2016). Investigating the role and position of digital audit in the ‎audit system. Quarterly journal of economic studies, financial management and accounting, 2(1), 136-145. (In ‎Persian). https://civilica.com/doc/541555/‎

‎[17] ‎ McKee, T. E., & Lensberg, T. (2002). Genetic programming and rough sets: a hybrid approach to ‎bankruptcy classification. European journal of operational research, 138(2), 436–451. DOI:10.1016/S0377-‎‎2217(01)00130-8‎

‎[18] ‎ Pendharkar, P. C. (2005). A threshold-varying artificial neural network approach for classification and ‎its application to bankruptcy prediction problem. Computers and operations research, 32(10), 2561–2582. ‎DOI:10.1016/j.cor.2004.06.023‎

‎[19] ‎ Sajady, H., Dastgir, M., & Hashem Nejad, H. (2008). Evaluation of the effectiveness of accounting ‎information systems. International journal of information science and management, 6(2), 49–59. ‎https://ijism.isc.ac/article_698119.html

‎[20] ‎ Lombardi, D. R., Bloch, R., & Vasarhelyi, M. A. (2014). The future of audit. Journal of information systems ‎and technology management, 11(1), 21–32. DOI:10.4301/s1807-17752014000100002‎

‎[21] ‎ Dinesh, N., & Juvanna, I. (2017). Dynamic auditing and deduplication with secure data deletion in ‎cloud. Artificial intelligence and evolutionary computations in engineering systems: proceedings of icaieces 2016 ‎‎(pp. 305–313). Springer.‎

‎[22] ‎ McGinnis, D. (2023). What is the fourth industrial revolution? https://www.salesforce.com/blog/what-is-‎the-fourth-industrial-revolution-4ir/‎

‎[23] ‎ Sjöberg, P., & Johansson, M. (2016). Shaping the future of the auditing profession in Sweden: a study of ‎the expected role of digitalization. Journal of emerging technologies in accounting.13(2), 1-20.‎

‎[24] ‎ Leng, A., & Zhang, Y. (2024). The effect of enterprise digital transformation on audit efficiency—‎evidence from China. Technological forecasting and social change, 201, 123215. ‎https://doi.org/10.1016/j.techfore.2024.123215‎

‎[25] ‎ Babayeva, A., Manousaridis, N. D., Kajtazi, M., & Emruli, B. (2020). The effects of digitalization on auditing ‎a study investigating the benefits and challenges of digitalization on the audit profession [Thesis]. ‎http://lup.lub.lu.se/student-papers/record/9021291‎

‎[26] ‎ Adiloglu, B., & Gungor, N. (2019). The impact of digitalization on the audit profession: a review of ‎Turkish independent audit firms. Journal of business economics and finance, 8(4), 209–214.‎

‎[27] ‎ Puthukulam, G., Ravikumar, A., Sharma, R. V. K., & Meesaala, K. M. (2021). Auditors’ perception on ‎the impact of artificial intelligence on professional skepticism and judgment in oman. Universal journal ‎of accounting and finance, 9(5), 1184–1190. DOI:10.13189/ujaf.2021.090527‎

‎[28] ‎ Alhumoudi, H., & Abdulrahman Juayr. (2023). Exploring the impact of artificial intelligence and ‎digital transformation on auditing practices in Saudi Arabia: a cross-sectional study. Asian journal of ‎finance & accounting, 15(2), 1–30. DOI:10.5296/ajfa.v15i2.18976‎

‎[29] ‎ Kuswara, Z., Pasaribu, M., Fitriana, F., & Santoso, R. A. (2024). Artificial intelligence in financial ‎reports: how it affects the process’s effectiveness and efficiency. Jurnal ilmu keuangan dan perbankan ‎‎(jika), 13(2), 257–272. DOI:10.34010/jika.v13i2.12730‎

‎[30] ‎ Lidiana, L. (2024). AI and auditing: enhancing audit efficiency and effectiveness with artificial ‎intelligence. Accounting studies and tax journal (count), 1(3), 214–223. DOI:10.62207/g0wpn394‎

‎[31] ‎ Aljaaidi, K. S., Alwadani, N. F., & Adow, A. H. (2023). The impact of artificial intelligence applications ‎on the performance of accountants and audit firms in Saudi Arabia. International journal of data and ‎network science, 7(3), 1165–1178. DOI:10.5267/j.ijdns.2023.5.007‎

Published

2024-08-06

How to Cite

The Impact of Artificial Intelligence on Audit Efficiency in Companies Listed on the Tehran Stock Exchange. (2024). Transactions on Quantitative Finance and Beyond, 1(2), 159-170. https://doi.org/10.22105/tqfb.v1i2.34

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.